skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Ju-Hyung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Large-scale channel prediction, i.e., estimation of the pathloss from geographical/morphological/building maps, is an essential component of wireless network planning. Ray tracing (RT)-based methods have been widely used for many years, but they require significant computational effort that may become prohibitive with the increased network densification and/or use of higher frequencies in B5G/6G systems. In this paper, we propose a data-driven, model-free pathloss map prediction (PMP) method, called PMNet. PMNet uses a supervised learning approach: it is trained on a limited amount of RT data and map data. Once trained, PMNet can predict pathloss over location with high accuracy (an RMSE level of 10−2 ) in a few milliseconds. We further extend PMNet by employing transfer learning (TL). TL allows PMNet to learn a new network scenario quickly ( ×5.6 faster training) and efficiently (using ×4.5 less data) by transferring knowledge from a pre-trained model, while retaining accuracy. Our results demonstrate that PMNet is a scalable and generalizable ML-based PMP method, showing its potential to be used in several network optimization applications. 
    more » « less
  2. Indoor localization is a challenging task. Compared to outdoor environments where GPS is dominant, there is no robust and almost-universal approach. Recently, machine learning (ML) has emerged as the most promising approach for achieving accurate indoor localization. Nevertheless, its main challenge is requiring large datasets to train the neural networks. The data collection procedure is costly and laborious, requiring extensive measurements and labeling processes for different indoor environments. The situation can be improved by Data Augmentation (DA), a general framework to enlarge the datasets for ML, making ML systems more robust and increasing their generalization capabilities. This paper proposes two simple yet surprisingly effective DA algorithms for channel state information (CSI) based indoor localization motivated by physical considerations. We show that the number of measurements for a given accuracy requirement may be decreased by an order of magnitude. Specifically, we demonstrate the algorithms’ effectiveness by experiments conducted with a measured indoor WiFi measurement dataset: As little as 10% of the original dataset size is enough to get the same performance as the original dataset. We also showed that if we further augment the dataset with the proposed techniques, test accuracy is improved more than three-fold. 
    more » « less
  3. This paper describes our pathloss prediction system submitted to the ICASSP 2023 First Pathloss Radio Map Prediction Challenge. We describe the architecture of PMNet, a neural network we specifically designed for pathloss prediction. Moreover, to enhance the prediction performance, we apply several machine learning techniques, including data augmentation, fine-tuning, and optimization of the network architecture. Our system achieves an RMSE of 0.02569 on the provided RadioMap3Dseer dataset, and 0.0383 on the challenge test set, placing it in the 1st rank of the challenge. 
    more » « less